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A 1, b1, bstr~ 
hstr geometric properties for the stringers

A 2, b2, br~ 
hr and rings shown in Figure 4.

A b 
~ ~~~~ geometric properties of the rein—

or 
~~ 

I~ forcing frame given in Appendix h.

displacement series coefficients

d L distance of frame from the centerline of the cutou tSf

D plate stiffness Eh 3/12(1—nu 2)

D1 strain energy density matrix

e , e , e strainsx e xe

E modulus of elasticity

F vector of external forces

FL vector of external forces for linear solution

G shear modulus

h shell thickness

~max 
total number of mesh stations

K , K , K curvature changesx e Xe

L length of the shell

L , L wavelengths in the x and e directions

L in Eq. (18) is a non—linear “stiffness ” operator

Is srccial c e r i v~~tivc of 1. as defined in Eq. ( 2 2 )

m nur~~er ot naif ~i~ ves in ~he a>:i&J direction

mu wavelength ratio rn/n

mu ’ ½ (12(1_nu 2)¼ (a2/RhY~

M , M , moment resultantsx e Xe
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n number of full waves in the circumferential airec—

tion

nu Poisson ’s ratio

N wavelength parameter

N , N , N stress resultantsx e xe

P , P , P dead loads in x , e, and z directionsx e r

P bucklina load of shell without a cutou t and withou t
0

a reinforcing frame

P1 buckling load of shell with a cutout but without

a reinforcing frame

P buckling loadcr

s imperfection sensitivity angle

S~ 1 classical buckling stress~~ .6Eh/R

S critical buckling stresscr

u , v, w displacements in the axial , circumferential , and

radial directions , respectively
* S *u , v , w displacements at buckling

U’, v’, w’ displacements at mesh station i

U total strain energy

strain energy density at mesh station i

v total potential energy

W potential energy of the work done by the external

forces F

volume per unit area of the removed cutout material

ratio of the reinfoLcing frame volume to the volume

of the removed cutou t material

x , e, z the coordinates in the axial , circum feren ti al and

radial directions , respectively
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Z Batdorf shell parameter (1—nu ) 2 (L Rh)
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ABS TRACT

A study was carried out to determine the optimum

placement and volume of a reinforcing frame around a cut-
- 

• out in an axially loaded stringer and ring and stringer

stiffened cylindrical shell. The problem w~ s analyzed

using the linear biturcation portion of STAGS (Structurci

Analysis of Genera). Shells). Four parameters were varied ;

stringers versus rings and stringers , cutout size , ratio

- • of frame volume to cutou t v o l u m e , and f r a m e  pos i t i on . It

appeared that in most eases the position with the frame

next to the cutou t edge wtr the most effective. ThIs can

be attributed to the frame ’s ability to delay the onset of

local buckling. However , there was a relative m a x i m u m  in

the  f r a m e  d i s t a n c e  versus  c r i t i c a l  load curves for a f r a n c

positioned away from the cutou t edge at a low ratio of

frame to cutout volume .
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CUTOUT REINFORCEMENT

OF

S T I F F E N E D  C Y L I N D R I C A L  SHELLS

I. Introduction

Back qçound

The c y l i n d r i c a l  she l l  is an i m p o r t a n t  aerospace s t ruc-

t u r a l  e l e m e n t .  The semi—monocoque  a i r p l a n e  she l l  s t r u c t u r e

of the  1930’ s was t yp i fiec3  by a very  t h i n  s k i n  suppor ted

by much s t i f f e r  l o n g i t u d i n a l  and t r a n v e r s e  r e i n f o r c iog  nrrn -.

bers.  As a r e s u l t , b u c k l i n g  of the  t h i n  s k i n  pane l s  was

primarily a local phenomenon. With the advent of rnissler

and the increase in flight speed , aircraft skins have ~c—

come thicker , and skins and reinforcement are of similar

r i g i d i t y .  B u c k l i n g  changed f r o m  a local c h a r a c t e r i s t i c  to

a problem of gene ra l  she l l  i n s t a b i l i ty .  A f u r t h e r  cornpli-

cation is encountered when an access door or similar hole

• must be inserted in the structure , thus weakening an other-

wise very efficient structure. The purpose of this thesis

is to determine the strengthening effects of a reinforcement

around a rectangular cutout in a stiffened cylindrical shell.

First , a history ot the .bucklin~ of c~ lindricai shells

is p r ese nt c : to p r t  ~~~~ :~r r b l e n ~ in  its pro;;er c o nt c xt .

Lo renz (
~~o~ 1) ;~s t h e  t i r s~ to d e r i v e  a b u c k l i n g

_
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formula for an axially compressed cylindrical shell. He

assumed that the edges were simply supported and that both

the prebuckling and buckling deformations were axisymmet—

n c . H.ts equations were slightly inaccurate, however.

Timoshenko (Ref 2) published the correct classical buckling

equation in 1910. The classical buckling formula is:

5c1 = (3(1 u2fl~~ E h/R ~ .6E(h/R) (1)

• where Sci is the classical buckling stress.

The general case of buckling without restriction to

axial symmetry of the buckling deformations was first dis-

cussed by Lorenz in 1911, assuming that displacements in

• an axial direction were negligibly small and the boundary

conditions were:

v = w = Iv
~x = O  (2)

The coordinate system used in this thesis is shown in Fig. 1.

* * *The buckling displacements are u , v , and w in the

axial , circumferential and radial directions , respectively.

The coordinate directions are x , e, and z.

In 1914, Timoshenko (Ref 2) determined that the non—

axisymmetric buckling stress was equal to .6E(h/R), the

same value obtained for the classical axisymmetric case.

For non—axisymmetric buckling , theory predicts the entire

surface will be covered by relatively small buckles. This

buckling pattern will be referred to as either the chess—

board pattern or the diamond pattern .

There are two basic problems with the buckling patterns

predicted by the linear classical theory. The first is that

2
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Stress Resultants

f z

M 
N

N xxe

Moment Resultants

Note: A v
u 5 , v , and w~ are L

z,w 1 x ,uthe displacements

u , v , and w at

: uc Kll r a

S h e l l  G e o m e t ry

Figure 1. Shell Geometry and Sign Convention
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axially symmetric buckling can occur only when there is

some plasticity, while classical buckling theory assumes

perfect elasticity. The second problem is that the uniform

pattern of buckles in chessboard buckling, is observed in

• experiments as only one or two rows of buckles with the

remainder of the shell smooth.

In 1932 Flugge (Ref 1.) tested a number of celluloid

cylinders for a variety of length to radius ratios and

radius to wall thickness ratios. lie discovered that these

buckled at stresses considerably below those predicted by

the classical buckling equation , with experimental to theo-.

retical buckling stress ratios ranging from .52 to .65.

To determine the possible causes of the discrepancy between

experiment and theory , Flugge examined the effect of bound-

ary conditions and small geometric imperfections upon the

buckling stress.

In the classical approach to shell instability , the

shell was assumed to expand uniformly inthe radial direction

along the shell’s entire length due to the applied axial load.

Flugge solved for the axially symmetric deformations of a

shell whose end sections are restrained in the radial direc-

tion. He found that a curved region existed along the merid-

ian near the ends. Increased loading caused the curved

regions to extend toward the middle and eventually the radial

displacements became infinitely large at the critical load.

He noted that the curvature caused local stress to exceed the

elas t ic  l imit even if Scr was well below the elastic limit. In his

4



investigation of a sine wave deviation froir~ perfect circu—

• lar cylindrical form , Flugge determined that the iniper—

fection would  dominate the buckling and grow infinitely

large as the classical load was approached.

Another investigation into the effect of boundary con—

ditions was given by Hoff in (Ref 3) and outlined in (Ref 1).

Starting from equations by Nachbar for a pressurized spheri-

cal shell , Hoff was able to determine that a semi—ir,finite

shell with the near edge perfectly free to displace would

buckle axisymmetrically at one—half the classical buckling

stress. In a follow up paper by Nachhar and Hoff , Scr/Scl

was determined to be .38 for non—axisymnmetric buckling.

For many years , the biggest problem with the solution

of shell buckling was the complexity of the governing shell

equations. In 1933 , Donnell (Ref 4) formulated equilibrium

equations for a cylindrical shell under torsion , based on

the following assumptions:

• 1. The material is perfectly elastic.

2. The thickness is small compared to the radius.

3. The deflections are small compared to the thickness.

4. Neglect distortion due to transverse shear.

A more convenient form of Donnell’s small displacement

equations (Ref 5) allowing general loading are:

+ ~~~~ e,e =

RNxe ,x + ~ e ,e ~e 
(3)

D v 4w +  Ne/R Pr

5
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The applied loads are p~~, ~~~~~ 
and in the axial ,

c i r cumfe ren t i a l , and radia l  d i rect ions , respect ively.

The Donnel l  equations have the advantage  that  they are

• much simpler than most others and yet , they are s u f f i c i e n t ly

accurate in b u c k l i n g  problems if the number of waves around

the circumference is sufficiently large. In 1947, Batdorf

(Ref 6) used these equations to solve a variety of stability

problems , and compared the solutions with other theoretical

solutions and test results.

• Using the Donnell equations , Hoff (Ref 1) demonstrated

that the appropriate boundary conditions for the classical

case of buckling are: 
*

w = w ,
~~~~

= N
~~

= v  = 0. (4c)

This is not the only possible simple support condition.

The four simple support conditions proposed by Hoff are

(Ref 1):

(4 1

SS4 w = 0  ~~~~~~~~~~ u = 0  v = 0

The corresponding clamped end condi t ions  are:

S S
RFI w = 0  w , = 0  N = 0  N = 0x x xe
RF2 w = 0  w’,

~~~
= O  u’ = O  N

~9
= O  (5)

RF3 w = 0  w ,
~~~

= O  N
~~

= 0  v = 0

RF4 w = 0  w ,~~ = O  u = 0 v = 0

In this notation classical simple supports correspond to SS3.

6 
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In the nex t few years researchers investigated both semi —

infinite and finite length shells with various edge condi-

tions with the aid of Donnell’s small displacement equations;

and the results compared well with other accepted , but  tedi-

ous solutions.

The significance of these resul~ s indicated that there

were solutions other than the classical one for the buck-

ling of a thin walled circular cylinder unaer axial com-

pression , despite the fact that the problem was governed by

linear equations. Another important aspect these solutions

pointed out , was that a thin shell placed between the ~1atens

of a testing machine can buckle anywhere between one—ha)f

• and the full value of the classical buckling stress. The

exact value depends on the friction between the test orti—

cle and the p l a t e n .

The difference between the predictability of the buck-

ling stress of bars and plates and thin sh .~lls had puzzled

Von Karmen. He observed that buckles grew graduall y in bars

and plates , but snap throug h in shells. After buckling,

bars and plates carried the load; while shells could only

carry a fraction of the buckling load. He de te rmined  t h a t

the key lay in the  c u r v a t u r e  of the  s h e l l .  The c l a s s i ca l

s o l u t i o n  l mo i i e s  t h a t  the  surfuce no’: bt~~~. le irrirrd or u~~t—

th  e q ual  ease.  Hoic’:cr , real  stel in show a ure~ e r—

ence to b u c k l e  i nwa r d .  In  1934 Donne l l  ( R e f  7 )  remedied

this problem by adding terms that were non— linear in the

displacements which took into

7
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accoun t  the n c n — 1j n o a ~ e ti e c t s  of the s h e l l  c u r v a t u r e .  The

non— li near L’onnell large displacement equations (hot 5) in

a convenient f orm are:

+ ; ~x , x xe , e x

ki\ + = Pxe ,x e,e

D V  + — (
x w * .~~., + 2 >,ew

*
,~, /R + = 

~r (G)

Note  t hat  the  l in ear  D on n e l .’ sna il disulacenont Eqs.

(3) may he o b t a i n e d  f ro m  the  n o n — l i n o s r  D o n ne l l  l ar g e  d i s—

olacement eqs. ( 6 )  by the  simule onioulor . ci all terms non—

linear in u, v , and i.

The problem with these equations w a s  that they were

non—linear partial differential ecuations and could not he

solved exactly. Both Von Karmen and Donr.ell obtained ri:.—

orous solutions for these equations by assuming displacener :t

patterns. In 1942 , Tsien sugcested replacing the otlina

stress with the minimum equilibrium stress after hucklina

as be ing  reasonable for bucklinc purposes.

While others were working on physical and mnathcmati—

cal reasons for the strange behavior of axially compressed

c y l i n d r i c a l  s h e l l s .  Yosh imura  (Re f  1) f o u n d  a geometr ic

reason  f o r  t h in  t e h o v~ or .  In  1951. Yo ir :ura  d et c r min o ~

t o a t  a c ir c u l a r  m cl i c o u lu  r u c~:lo in t o  a ci ~mor~ i rot t er n

s i m i l a r  to tu e  p r e vi o u s l y  n en t i on cu  cncasi .) o ar u  t a t t e rn

w i t h o u t  c a u s i n g  any  membrane  s tresses.  The s iQn i f i can c c

of this pattern is that a thin shell’s extensional stiff-

ness is much greater than its hendinc stii~~nens. The



incompatibility of _the diamond pattern with the support

condition probably is the reason why , experimentall y,

shells buckle with only one or two rows of diamonds.

In 2963, A].mroth (Ref 1) using the comp~ ter investi-

gated combinations of the various terms of the series:

* ~~ * * * *
w = I I A.k cos (~~7rx IL ) cos (kfle /L ) (7)

j=0 k=0 ~
In this investigation , Almroth minimized the total poten-

tial energy with respect to mu and N where:

mu = rn/n N = n (hIP ) (8)

m is the number of half waves in the axial direction and n

is the number of full waves in the circumferential direction.

Almroth ’s results were in excellent agreement wi th work by

Thielemann (Ref 1), who had performed experiments with

extreme care and later compared the experimental results

with analytical results.

The problem of considering various combinations of

terms in Eq. (7) was looked at by several authors between

2942 and 1965. The minimum ScrR~
’Eh determined from these

efforts was .0427, which was well below the classical value

of .6.

It is interesting to note that with the larger number

of terms retained in the expression for w , the coefficients

of the double Fourier series approach those for a Fourier

series expansion of the Yoshimura buckling pattern. A prob—

lem with the technique whereby the potential energy was mini-

mized with respect to the wave length parameters was that ,

as the number of terms increased , the

9
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solution was onl y valid for an infinitely thin shell , since

N was f o u n d  to approach zero.  This  was overcome by requir-

ing N~~ 4n/R , since n , the number of circumferential waves

could not be less than two.

Investigation s based on the Donnell large displace-

ment equations , were carried out by several authors in the

next few years to determine analyticall y the effect of

small deviations from the nominal geometry upon the buck-

ling load of a thin cylindrical shell. It was noted by

Madsen and Hoff (Ref 1) that a non—symmetric deviation

amounting to one—tenth the wall thickness coupled with an

amp litude of axisymmetric deviations one—fortieth the

thickness of shell resulted in a reduction of maximum load

to 60 per cent of the classical value for a perfect shell.

Hoff noted that the large disp lacement Donnell equa-

tions were completely inadequate to ropresen t the inexten-.

sional deformations of Yoshimura pattern when there are

five to ten triang les around the circumference of the shell.

Mayers a Rehfield (Ref 1) also noted that the equations

could not handle the plastic stresses along the triangle

edges with the result that the curvature predicted along

the triangle edges was too large.

Another limitation of the theory is that it does not

adequaLely ex~ ress the reuuction of the buckling stress due

to large R/h. Theory predicts that k is independent of P/h

in Scr = k Sh/P (for Sci ,k = .6). It was noted by Mayers

and Rehfield that the dependence of k on R/h was negligibly

10
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small even usina the Donnell large displacement equatirns .

Madsen & Hoff (Ref 2) demonstrated that the replacement

of the grossly inadequate large displacement Donnell equa-

tions by more accurate equations does not significantly

change the equilibrium stresses obtainable from the equations.

The explanation of the apparent paradox is that the large

number ot buckles around the  circumference allow the shell

to be considered a shallow shell.

Stein , Fischer , and Almroth separately investigated the

effect of prebuckling displacements on the hu~*ling stress

for a variety of boundary conditions. Almroth compared the

• results and concluded that the effect of boundary conditions

was much larger than the effect of prebuckling dispiacements.

Koiter was the first to call attention to the importance

of the stability of the system at the bifurcation itself.

He demonstrated that if the second derivative of the peter—

tial energy was zero, and if the third derivative were not ,

then the system would be unstable. This is true since the

• bifurcation point would correspond to a minimax of the poten-

tial energy. Under such circumstances the system is very

sensitive to small initial deviations from the perfect shape.

Stein (Ref 8) presented an excellent survey of advances

in shell buc klinc dur ing the time coriod of 1960—196 7. In

this caper , S r e i n  d e a l t  w i t h  two mu ~or topics: The ii: part

of imuroved non— linear shell proburk lir .c : theory .3nd the

Ii



significance of experiments upon near—perfect shell speci-

mens.

Stein gave a brief derivation of consistent shell buck—

lina equations to point out the differences between con-

sistent and conventional buckling theory . In conventional

theory, linear membrane theory is assumed to app ly in the

prebuckling range which leads to constant radial displace-

ments. This in turn assumes that the shell boundary con-

dition s change during buckling. On the other hand , in

cons i s t en t  b u c k l i n g  theory  the  n o n — l i n e a r  l a rge  d e f l e c t i o n

Donnell equations , Eqs. (6), are used so that the prebuck-.

ling boundary conditions can be consistent with the boundary

conditions for the buckling solution . It should be noted

that the buckling equations for consistent theory involve

prebuckling terms which would vanish in conventional theory.

Stein picked results from several researchers who had

tested near—perfect shells. The materials used were photo—

H p last ic , nickel , and copper. The importance of these tests

was that the near—perfect shells buckled at stresses con-

siderably closer to the classical buckling stress than

previous experiments. The conclusion was that most of the

scatter in experimental results was due to small initial

deviat i ons iron per~ ect shell geonotry.

• ~ he use of n o r -  l i n ea r  b e n d i n a  rh e o r  y h a s  l o a d  to closer

aqreer :ent b e tw e e n  theory  and e x p er i me n t , p ar t i cu i a r i y  f o r  a

near—perfect shell w i t h  R/h less than 300; see figure 1

• (Ref 8).I
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Stein also includes a section on shallow spherical

shells under ex ternal pressure with similar improved agree-

ment between theory and experiment.

Practical shells do not have near—perfect geometry as

assume d by theory an d therefore , techniques to determine

the reduction in buckling strength due to imper fec tions

are required. Artificial buckling criteria such as post—

buckling minimum loads and loads corresponding to equal

energy states do not account for imperfections , and are

thus inadequate.

A measure of a shell’s sensitiv i ty to initial impe .r—

fections is given by the imper fec t ion  s ens i t i v ity ang l e  s

(Ref  8) .  This parameter  is re la ted  to the i n i t i a l  pos t—

buckl ing  slope of the load vs cha rac te r i s t i c  displacement

curve , and is defined in Fig. 2 taken from (Ref 8). The

C H A P .  DISP. = AXIAL DI SPL A CEH~ NT

AVERAGE APPLIED LOAD 3 i \
— CRITICAL LOAD N

I — 1
—2

49
S =—

11~

0 1

CHARACTERISTIC DI SPLA CE1~7EN T
CRITICAL DISPLACEMENT

Figure 2. Def in i t i on  of I n i t i a l  Postbuckl ing Slope
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pdrameter s varies from —3 to 1, that is irom a cond ition

wh er u  i t  d o u b l e s  back on i t s e l f  to a c o nOi t i o n  where it

is tangent to the prebuckling curve. Por s positive, im-

perfections do not appreciabl” alter the buckling loud ;

for  s n e g a t i v e , ir~perfections will decrease the bucklinc

l o a d .  s a l so  u ro vi c i o s  a m e a s u r e  of the  e xp e c ted  v iol  once

of the  b u c k l in g  process ; for  s<— 2 “ snap  t h r o u g h”  b u cn l i ng

w i l l  a lways  occur , whereas for —2 <s <0 buchling will be

violent or gentle depending on whether loading or charac-

teristic displacement is controlled.

For the cy linder in axial compression the sensitivity

angle s (calculated on the basis of conventional theory)

is s —3. This condition agrees with snap through bumP—

l i n g  observed in  e x p e r i m e n t s .

Altho ugh it has been previously pointed out that the

m a j o r  cause of d i s a g r e eme n t  be tween e x p e r i m e n t  and t h e o r y  H
is the  presence of i n i t i a l  d e f e c t s , r esearch  i nd i ca t e s

t h a t  b o u n d a r y  c o n d i t i o n s, e c c e n t r i c i t y  of s t i f f e n i n g  and

e c c e n t r i c i t y  of load a p p l i c a t i o n  also a f f e c t  the  b u c k l i n g

lo ad .

The eccentricity of stiffeners also strong ly affects

the buckling load. For example , Card (Ref 1) demonstrated

t h a t  e x t e r n a l ly s t i f f e n e d  s h e l l s  hcr ’e c a r r i e d  more t h a n

tn  cc t h a  lo~~d by inter nal s t i tf ~ n o~ c’ :i in r r ~ na l  she: I s .

~ hLs effect wifl b o o  u ve r e d  mor e  e x t c  nsive ]v ~n a later

s e c t ion .

Another factor which afiects the buckling load , is

the e cc e n t r i c i t y  of the loading relative to the neutral
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a x i s .  R e s u l t s  o b t a i n e d  by Block  and A l m r o t h  (R e f  1) show

t h a t  up  to f o u r  t imes  the load are a v a i l a b l e  w i t h  the load

a p p l i e d  on the  i n s i d e  of the  ne u t r a l  s u r f a c e  fo r  both i n t e r —

- ‘ nal and external stiffening compared to the cases for load-

i ng  a t  the n e u t r a l  s u r f a c e .

An aspect of stiffened cy l i n dr i cal s h e l l s  t h a t  is not

p resen t  in the  u n s t i f f e n e d  s h e l l , is that small meridianal

c u r v a t u r e  d r a s t i c a l ly a f f e c t s  the  b u c k l i n g  load .  For in-

ternal stiffening, the ad di t ion of 7 .8 per cent  ou tward

r ise r e su l t s  in an increase  in load by a f a c t o r  of n i n e .

U n s t i f f e n ed  s h e l l s  in compression do not  carry  apprec i ab ly

more load with the add ition of small meridional curvature.

The conclusion that can be drawn is that properly posed

buckling theory is correct ; and that there is no need for

postbuckling minimums .

In the  a p p l i c a t i o n  of t h i n  she l l  t e c h n o l o g y  for  aero-

space a p p l i c a t i o n s, it is often necessary to desi gn a

cy l i n d r i c a l  s h e l l  with a cutout for non—structural access

doors to i n t e r n a l  equ ipmen t , or any  of a number  of o the r

purposes. The exact solution to such a problem is beyond

present analytical capabilities. As a result , severa l

researchers have undertaken projects in this area. One of

these  researchers  is S tar n e~ (R e f  9) , who has  i n v e s t i g a t e d

the  b u c k l i n g  of a t h i n  u n s t i f f c n e d  cy l i n d r i c a l  shell .  w i t h

a s in g l e  c u t o u t , bo th  e x p e r im e n ta l l y and t heo r e t i c a l ly.

S t a rne s  ( R e f  9)  conduc ted  two series of e x p e r i m e n t s ,

one on she l l s  made of D u p o n t ’ s M y l a r  w i t h  a l ap  seam; and

15



the other series of t~sts on seamless electroformed copper

shells. The parametric ranges were: 400<R/h<960 and

0<a/R<.5; where a was the hole radius. The experimental

• buckling loads , displacements , and the stress distribution

a p p l i e d  at  the end of the she l l  were co r re l a t ed  w i t h  a

t heo re t i c a l  p a r a m e t r i c  s t u d y  per formed  by means  of a

R a y lei g h — R i t z  type  of a p p r o x i m a t i o n. The r e s u l t s  of these

experiments led to the conclusion that the governing para-

mete r  of the problem was r e l a t e d  to a 2 / R h  r a t h e r  than  a/R

as suggested by Tennyson . Lekkerkerker (Ref 9) has shown

t h a t  the  p a r a m e t e r :

mu ’ 
= i~ ( 12 ( 1_ n u 2 ) ) ½ ( a 2/R h ) i ( 9 )

governs the prebuckling stress distribution and displace-

ments for a circular cylinder with a circular hole in its

s&de. It should be noted that the effect of the hole is

very localized in nature. Both membrane and bending stress

increments occur; but the bending stress increment is always

much less than the membrane stress increment. It should

be appreciated that the maximum membrane stress will rise

significantly above the stress value obtained for a hole in

a f l a t  p la te .

The bucklin g analysis referred to later and the experi—

m e n t a l  r e s u l t s  p resen ted  below i n d i c a t e  t h a t  the b u c k l i ng

load  of a c i r c u l a r  cy l i n d e r  w i t h  a c i r c u l a r  hole  in i t s

side are re la ted  to the r a t i o  a 2 / R h .  I t  is reasonable to

assume t h at  mu ’ of Eq. ( 9 )  is the govern ing  parame ter for

the problem.

16
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It was possible to identify approximate ranges of

the parameter mu ’ with different buckling characteristics.

For mu ’ ~ .4 i m p e r f e c t i o n s  were the d o m i n a t i n g  fac tor

causing buckling below the classical load. For values of

mu ’ between .4 and 1.0 the buckling loads dropped sharply

as mu ’ increased. In this range , the prebuckling stress

concentration around the hole caused local buckling, and

since the entire shell was sensitive to small disturbances

in t h i s  load r a n g e , general  b u c k l i n g  was caused by the

local snap through. For mu ’ between 1. and 2.0 there is a

t r a n s i t i o n  between the sha rp  dec l ine  in b u c k l i n g  load of

- • the previous region and the m i l d e r  dec l ine  beyond mu ’ =

2. 0. For mu ’ greater  than  2 local b u c k l i n g  occurred a t  a

low enough load so tha t  the she l l  was  no t  s u f f i c i e n t l y  sen-

s i t i v e  to d i s t u r b a n c e s  to cause genera l  co l lapse .  The

collapse load was in genera l  s l i g h t ly h i g h e r  than  the local

buckling load for mu ’ ) 2. For this case , the maximum dis—

placement at the edge of the hole was on the order of .25

inch , which is many times the wall thickness , and sur-

prising ly large when compared to the prebuckling displace-

ments in a cylinder without a cutout.

Starnes (Ref 9) presents results from his copper shell

H experiments for the range 0 ~ mu ’ ~ 3. The r e s u l t i n g  curv e

of S/S
~~ 

vs mu ’ followed very nicely with the data from the

Mylar shells. Of interest are figures 6 and 7 in (Ref ~ )

representing the prebuckling displacements at S/Se, = .398.

Starnes performed



a s i m p l i f i e d  a n a l y s i s  of the  b u c k l i n g  of a circular cylin-

drical shell with a sin g le circular hole assuming that

genera l  col lapse  was i n i t i a t e d  by local b u c k l i n g  and t h a t

the  s tress  d i s t r i b u t i o n  in a flat plate closely resembled

the  membrane s t ress  d i s t r i b u t i o n  in a cylinder. Despite

these restr ic t i v e  a s sumpt ions , the t rend i n d i cat e a  by the

a n a l y s is f o l l o w e d  the e x p e r i m e n t a l  r e s u l t s  fo r  mu ’ < 2.5.

For mu ’ >2.5 the Donneli approximations of linear shell

theory were no longer valid due to the large prebuckling

d i sp lacemen t s  and theory and expe r im en t  diverged s h a r p l y .

As~ previo u sl y ment ioned , local b u c k l i n g  is rarel y

critical in modern s t i f f e n e d  s h e l l s  and hence genera l  in-

s t a b i l i t y  is the dominant criterion . For many years stab-

ility analyses of stiffened shells considered equivalent

or tho t rop i c  s h e l l s  and the eccen t r i c i ty  of the s t i f f e n e rs

was not taken into account in these anal yses , due to the

complexity of the equations. More recently with the aid of

compute r s  the e f f e c t  and i n f l u e n c e  of stiffener eccentricity

has been explored by authcrs for internal and external

stiffening for both rings and stringers. The general con-

clusion that can be drawn is that for an axially loaded

c y l i nder , e x t e r n a l  s t i f f e n i nc j  is most e ff i c i e n t .  A s i m p li -

f i e d  app roach to the  problem of incorporating eccentric

stiffening into the shell equatIons is called smeared

stiffener theory in which the stiffeners are assumed to be

evenly distributed or “smeared” over the entire shell sur—

face. This approach appears to be satisfactory for closely



stiffened shells that fail in general instability , since

the effect of the discreteness of stiffeners is usually

n e g l i g i b l e .  The adequacy of smeared s t i f f e n e r  theory , is

still in question and must be verified. A review of ex-

perimental work to assess the bounds and extent of appli-

cability of linear smeared theory was given Singer (Fef 10).

In outline , the analysis enp loy~~d the  Donnell stability

e q u a t i o n s  t h r o u g h  ~.the force and moment expressions.  In  the

m a t h e m a t i c a l  model , the s t if f e n e rs  are smeared to form a

cut layer of many parallel rings or stringers which touch

each other but are not  connected. The main assumptions are:

a. The stiffeners are distributed over the whole

surface of the shell.

b. The normal strains vary linearly in the stiffener

as well as in the skin. The normal  strains in

the skin and the stiffener are equal at their

point of contact.

c. The inpiane shear membrane force is carried

• entirely by the shell.

d. The torsional rigidity of the stiffener is added

to that of the skin.

The analysis is outlined in (R9f 10) and given in detail in

( R e f  11) .  The resu l t i n g  equa~~ions  have  be en solved f o r  a

v i r i e r n i  of bc~~n d a r y  condi t i e rs .  ~ ur cJ r : i ~~rd ends  a G a l e rk i n

t e c h n i q ue ~.as employed since the eq u a t i o ns  could no t  be

solved directly.

The main objective of investigating linear smeared
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s t i f f e n e r  theory is to de te rmine  the e f f e c t i v e n e s s  of the

stiffeners and t he i r  relative importance . Batdorf (Ref 6)

has shown that the shell geometry can be characterized by

a sing le parameter Z.

Z = (1_nu 2)½ (L2/Rh) (10)

The important stiffener parameters are spacing, shape , cross

sectional area , and eccentricity.

Cross sectional area is usually the most important

geometric property of the stiffener determining their effect-

iveness. However , it also d i r e c t l y a f f e c t s  the w e i g h t  and

m u s t  be m i n i m i z e d .  For an a x i a l l y  loaded cy l ind r i ca l  shel l ,

s tr inc iers  are t f l ’?  most efficient stiffeners. Outside

stringers h a ve  been shown to be a lways  more e f f i c i e n t  than

an equivalent weight unstiffened shell.

Rings are much less effective than stringers in the

stif~ ening of cylindrical shells under axial load , when

alone. But , when they are added to an axially stiffened

shell , the buckling load is increased significantly.

As was done for unstiffened cylindrical shells , the

effects of boundary conditions have been investigated for

stiffened cylindrical shells. The effects for external and

internal strinqers are significantl y different , and ~o~ cna

j s tronqlv on the s trinoor geor.~otr . In seneral , a x i a l

restraint (u 0 instead of = 0) is th e  pr edomin~~n t

factor for simple supports. With internal stringers , axial

restraint (u = 0 instead of = 0) increases the buckling

20



load abou t 45%.

W i t h  e x t e r n a l  st r i noe r s , a x i a l  r e s t r a i nt  is less e a f e c —

tive , and for weaker stringers the effectiveness of axial

r e s t r a i n t  decreases even more.

For stringer stiffened sheJ is u no er  axial compression ,

rotational restr~.int i•s a maior factor which raises the

bu chlIng load considerabl y.

The efi oct of non—linear prebucklino defcrriutions were

cons idered .  S inge r  (Re f  10) f o u n d  t h a t  n o n — l in e a r  p rebuck —

l i n c  d e fo r m a t i o n s  appa ren t l y were not  a m a j o r  f ac to r  in the

d e t e rn i n a t i o n  of the  b u c k l i n g  load of s t i f f e n e d  cy l i n d r i ca l

shells. However , for short stringer stiffened cylindrical

shells , the non—linearity in the prebuckling dcfarmations

may w a r ran t  further study.

Ano the r  bounda ry  e f f e c t  of st r in q er  s t i f f e ne d  sh~~l l s

is the load e ccen t r i c i ty .  The usua l  an a l v r c~ a s u t me  t h a t

the load is applied at the skin midsurface. The end momcn~ s

caused by this eccentricity may have a s i g n i f i c a n t  e i f e ct

on the buckling load. The length of the shell affects t h c

magnitude of this effect. That is , for a short shell this

effect is small , while for a longer shell this effect is

much greater. Moments which tend to bend the shell middle

oU~~~~~~r ( a ~~ci s i v~ ~ i~~a to L~~as i le hoop s t r e sses), inci c~~se

t h e  h u :h 1 i n q  l o a d . Henc e. ser  i n : ~c r n ~~ s t~i : c c r s .  i c a d i n ~.

th ro cjh the shel o Jaui 1~ice aecroasos the buckling lc~~d.

In 1962, Professor Van der Neut stated that he expectea

a reduction in imperfection sensitivity in stringer stiffened

21 
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s h e l l s  tj I th the conclusion that l i ne a r  theory would be

a d e q u a t e  to p red ic t  the ir buc k l i n g  loads for uceoral insta-

bility .

Sin qer  i n d i c a t e s  t h a t  s t i f f e n e r  area r a t i o  is an im; :or—

tant factor in stringer stiffened shells. It is , ho’.•:cvcr,

not the onl y important parameter in the problem ; the shell

qeooctry parameter Z is of equal import:ance.

Initial imoerfections have been iaentified as the main

cause of the large discrepancies between experimental arid

theoretical buckling loads of unstiffened cylindrical shells

under axial compression . For closely stiffened sheJls , the

influence of imperfections is less pronounced , however , i n —

perfections remain the primary dearading factor.

Another factor recently shown to cause sca~rter in ex-

perimental buckl inc stress is the effect of inelasticity •~t

low values of Rib. This plasticity occurs even when Scr is

w e l l  below the e l a s t i c  l i m i t .  Hence , v ar i a t i o r .  of th e

elastic limit or the material could cause some scatter at

all values of R/b.

Singer discusses  va r ious  a t tem p t s  by several  au tho r s  to

de te rmine  the o p t i m u m  s t r u c t u r a l  e f f i c i e n c y  of s t r i n g e r

stiffened cylindrical shells under axial compression . It is

shown that the most efficient stiffening is for lighter

strinner s are thtn r~er s h e l l  as c n a c r er ~ to th~ cker eaniw

ion abel 1 a t  ne~~vy s r in~ ers. or iu~e .u tinra . nf. ic~ e n a~

• 3 < . A
1/bh< .& f o r  a atrrnacr s t i i ; c n e  s c L  . a i cre  ~~~~ i s

the cross—sectional area oi the stringer and b is the

stringer spacing.

Practice]ly all minimum weiqht design studies have been
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i - a a c a  on linear ti our “ . H . ‘~~~ i ’ a  • c~~r c ’ m’~r t Le taken n

such  studies uccause t hc ‘ u r e  cases th er e  as ~ns ti i fe r ieJ

shell ir; predicted to bc t a x  a erlicient that a sl~~chtl y

stirfened zielJ . Thus , an ~rr oseous C r a . J  u s i r ~~~~ x ) : ~~~1i~~O.1

rrom sucn a sau J \,’ i i  t l ~~ r u  hacher ir~~e; cc~ ion s a n s . .  t~ v: —

tv 0: the uns ai :er .eu s a c ? . 1 i s  a z a s c ~a ~ r s c ~ a c c t n z .  a r c a

tais could ~el i rever se the  rela Ijor, of the ac~~:a1 h ;aklin c~

i a ad s .

Pel a so i n c ,  ( h e r  T . 2 )  earlored tac valia itv at usIng

l ancar caturcation theory for tie asahi 159 a n a l y s is  of

strinoor eros r a n q — s t r l n ( : e r  .:.tjffCflCd cyll fl~~L o s C a l  s h e l l s  ~‘3 th

rectannuiar cutouts. This analysis acs performecx using t e

• STAGS (kef 13) (Structural Anal ysis of General Shells) cur—

puter proaram. T h i s  orcuram incorporates linear biiurca—

tion theory . non—linear colla nse araivais , discrete stosb o;.--

ing, and smeared stiffening theory .

The buckl ing loads of stringer and rinc and strinaci

cylindrical shells were corrouted usinc bo th  the linear bibsr—

cation analys is and the non—line ar co] l anse  a n a l y s i s capa-

bility of STAGS. U r c n  the resu l ts for  both  the  l i nea r  an d

n o n — l i n e a r  an a l yse s cempared w i t h i n  a fe ’.: per cent , P a l a zc~t to

conc luded  t h a t  l i n e a r  o i fu r c a t i o n  theor y a de q uat e )y  p r e d i c t s

the  b u c k l i n g  load of a s t i f f e n e d  cy l i n ~~r ic a l  shel l  w i t h  cuL-~

o at s .  T ne is , : ar u n c e  of t si~ ta ct is that a r.on—~ In ca s

c s l i a . : , c . ~a r l v s s a roi ch :. r e  e . .sen:~~ve t h an  a l in e a r

r ut .  a .  a n a l w s r ;  an tax .~s oi cc~~suter tame .

A l rniscoi snvortiaaticn tar carries o u t  to determine

the effect of cutou t r e in fo rcemen t  of stiffened cvuindrical

shells.
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I t  is the  purpose of t h i s  thes is  to d e t e r m i n e  the vari-

ation of b u c k l i n g  load w i t h  the locat ion  and volume of a

reinforcing frame around a r e c t a n g u l a r  c u t o u t  in a stiffened

cy lindrical shall.

General Prauc . . s e

The buc kl ing load of the  c y l i n d e r s  in v e s t i g a t e d , were

determined using the linear bifurcation capability of the

s:~ c;s (Structural Ana}.ysis of General Shells) computer

pro gram an d  smeared stiffener theory. Four parameters were

varied in this study: stringer versus ring and stringer

shell stiffening, cutout size , reinforcing frame to cutout

volume ratio, and frame position .



-

II • ‘i’heorv Sni .CH C: 1 r i O
—

Con e :  ; e .;cr .i i 51; of S t a as

d TAG~ ( S t ru c t u r a l  A n a ly s i s  of General  S h e l l s)  is a

computer procrea to anal yze the behavior ol general shells

Lr.cer a r h i  trary static and thermal loading. Non— lineari ties

cau sed by plasticity and deformations are accounted for.

S TA G i  is based upon an energy formulation in which the

derivatives ar e  res~ aced hu their bra—dimensional finite

difference aparoximations. f~inimization of the potential

enem y leads  to , in the  ge n e r a l  case , a n o n — l i near  set of

a lq e or a i c  e q u a t i o n s  w h i c h  are solved by a modified Newton—

Raphson technique.

S T A G S  can p e r f o rm  e i t h e r  e l a s t i c  or p l a s t i c  an a ly s e s

of sh ells. For the elastic portion of STAGS th ree  t~’uos

of cralvses n a y  be norfc”uied; linear elastic , c lass ica l

bi i urca~~icn with linear prehucrUnq displacements , ari d non—

li rc .r elastic collapse anal ysis. S ’J I..GS al s o  performs a

non—l inear inelastic analysis , bu t  does no t  permi t the

ter pei~nture or material properties to vary with the space

coordinates.

Geomet ry  is de f ined  u s i n g  any  one of the  s t andar d shel l

ae. ot:r’’ oaY~~n: ( r 1 c ~~t~~~. circu lar . cylinder. etc.): or the

ro er a n e~ siav wr i . t u  a s ub r o u t i n e  to  refine h~~s c . n  r a r t l o —

.;iar c a r ; c t r \ ’ .

Shell stiil ening can be accomplished in several ways.

First , discretely located stiffeners can be positioned



anyw here on the shell surface along a coordinate line.

Secon d , the entire shell may be stiffened by using the

“smeared” stilfener capability . Lastl y, a subrout ine can

be added t: the nroarsn to define ti - a s t i f f n e s s  p r o p e r t i e s

of the shell wall, to which ntiffener effects can be adJed .

The user aiso has the option to specify one of the standard

wall uc r il i guxa tiens. Provisions have been made to incor-

p or at e  s he l l  cutouts along coordinate lines.

O u t l i ne H h J O b  Th e o r y

A review of the theory used in STAGS is given bela:.

A more comniete treatment of the theory is given in (Ref 14).

The solution procedure used in STAGS is based upon the

principle of stat ionary potential energy. The shell sur-

f a c e  is covered with mesh lines parallel to the coordinate

l ines. The degrees of f reedom are the disp lacements u , v ,

and w in  the axial , circumf e r e n t i a l , and r a d i a l  d i r e c t i o n s ,

respectively.

The total strain energy of the shell is obtained by

numericall y integrating the strain energy density over the

H s u r f a c e  of the s h el l .  For the  i n t e g r a t i o n  procedure the

shell surface is divided into a number of subareas , in

w h i c h  each subarea  c o r re s r on o s  to the  I n ter s e c t i o n  of two

:a~~sh lines . i ~c displaceme nts anc t: :os i r  des v a t i  yes are

reniaced ay the a p i r o p : : ia te  lini to airiesence approximations.

A vect or , Z~~, of s t r a i n s  ari d c u r v a t u r e  changes  is e v a l u a t e d

at mesh station i, where:
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Z’ -: Ie a a I P ( 1 1)
L X ~ ce X 0 XOJ

Z i i nd ica tes  the  t r anspose  of Z~~. N o t e  t h a t  Z~ is , in

genera l , a non— linear function of the d isp l acements  an d

their derivatives at mesh station i.

T u e  di  solaceconta and darius Lives at mash station i

an .: a; pr o~:I r a t e d  u s in g f i ni t e  difference techniques , hence ,

the saaro :i;rated d ~spiac:c: .cnts , their deri’~’at ive , and

are  f u n c t i on s of t he  “ru:” disp lacement unknowns surroune-

in c ton h station i. Excellent descriptions of finite

di fference oppr oximations can be found in the works by

Deschler (PcI 16) and Jilcy (Ref 17), therefore finite

difference approximations will not he aiscussed further.

The totol vector of rat csisplacement unknowns is:

Lu~ — —— u1 v1 1 maxj (12)

w h a m  u1, v1, and w’ are the “ raw ” d i sp lacement unkrours at

mesh stat i ar; i , and i is the total number oL mesh stations.

Rote th at there are 3 i  displacement unknowns.m ax
The s t r a i n  energy  d e n s i ty  at mesh station i,~~U

1, is a

f u n c t i o n  of the strains and curvature changes. Let the

m at r i x  D~ a t s t a t i o n  i be d e f i n e d  as:

i~~ , ~~~~ ( 13)

rae e a o s . c r lp r  ~olJ cci Ic  a across ir;csica loss u.~~fem~~nti—

ation w i th r esp ec t  to one of the  strains or changes of curva-

ture. For k = 1,2,3 ,4,S,6, the derivativ~~ are to be taken

with resr:ect to a , a • a , K • K , 1< , respec t ive l” .
x ~ ::~ x e xe

L _ _ _  _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



A der ivation of for a snell iitn sn ea r as srringers is

given in  (Ref 13). The strain energy density at subarea

i .
a is:

A U 1 
= ~~

1- Di ;41 (1’~.)

A U1 i s a f o u r t h  decree r ’o l y n ol i a l  in t n e  di  sp i a c e n e nt  u n —

k n e . : n s .  S t i i u : . ; r ; o  s t m  s in  er ercy calt rihut ion s b r  m l ~ s un —

areas v i o l a s  t h e  t ot o l  sL r S i f l  cn er qv  i c r  t he  shell.

A a
~~~~~ U a

3.

If F is the vector of extcrna ! forces corresponding to

H the  d i sp l a c e m en t u n k n o w n s , t hen  tao uc t en t i a l  energy of the

work  do ne by ect e r n a l  forces , \ ‘ , can be expressed  as

= x’ni: (16)

The to ta l  p o t en t i a l  energy  of the  sys tem is:

V = U—W (1’!)

N o t e  t h a t  the  p o t e n t i a l  ene rgy , V , is a f o u rt h  decree p o ly~

n o m i a l  in the di sp lacement  u n k n o w n s .  S ta t i c  e q u i l i b ri u m

requ i re s  tn at  the f i r s t  v a r i a t i o n  of the po ten t i a l  energy

be equal to zero  and  leads to the equation:

: x = ~ 
( ~~)

. : re :a  t he n c r — l  i~~ear  “ s t a r  ne ss ” oncr~~zas :c c1.o dis:. lo~.os—

n or t  u l n u c :  n t i s  b a l i  rae  b i  t~~a r o l l o . . i n a  coa st i on :

LX = grad U ( 19)

L 
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or e q u i v a l e n t l y  t he  rows , LL>cj . , of LX are d e f i n e d  as:

LLxJ. = ) U  ( 2 0 )
1 

~~ X ( i )

where  X ( i )  is the  1th componen t  of tu e  vec toc  of d i sp lace -

m en t unknowns.

h hcn on ly  l i n e a r  t erms  a re  i n c l u de d  in the s tr a i n  and

c u r v a t u r e  c h an c e  r e lat i o n s , L degenure tee into a linear

operator of matrix form.

~/hen L is non— linear , iterative techniques must be en-

ployed for the solution of Eq. (18). A general collapse

analysis requires that Eq. (18) be so]ved far a sequence of

app l i ed  loads .  A reasonabl y good i n i t i a l  a pp r o x i m a t i o n  of

t h e  s o l u t i o n  and  a series of m o d e r a t e l y i n c r e a s i n g  load

s teps  are req u i re d for  r e l i a b l e  d ct c st i o n  of coll apse  due

to the  n o n — u n i q u e n e s s  of the  s o l u tio n s  to n o n — l i n e a r  cc~u a —

t i o n s .  The r e a u i r em on t  t h a t  Eq .  ( 18)  be so lved  r ep r a .t e d i v

us i a; i te r at i v e  techn iques , i s  w h a t  m a k e s  a n o n — l i n e a r

c o l l a p s e  analysis so expensive compared to a linear bifur-

c a t i o n  a n a l ysis (described later).

A br ie f descr iption :ill be given of a modified Newton—

F aphson method used in the solution of Eq. (18) for the dis-

p lacem en t  u n k n o ~.’ns , X. For a function g (x) = 0, the  w e l l —

k n o w n  he . ;t n-- : a uh s o n  i t a i n t  10::

— c (X. )/c ’ (b~ 
) (di)

where X1 is a n  a p p re c ia te s o l u t ion  to g ( x )  = 0 and ~~~~~ is

a be t t e r  aparoximation . Repeated application of Eq. (21)



y i e l d s  a s o l u t i o n  to g ( x )  0 to a r ”  des i red  accurac:y.

Rotation will be simnlified ri th introducti on of:

L .  = 
2 U ( 2 2 )

13 
~

tn l e s s  the non— l incas t e rm s  of I are u r o n r e d .  L w i l l  be a

f u n c t i o n  of a n ar t i c u l at  c i s c]~~cerncnt  v e c t o m  >~~: ,  crab ~.‘i l l
V I

ac des un~~t~~d L • t i  UN N t h e  ie:tcn — hathr cn ratnod
‘k

car  be r e a ai lv  a:: tended to so lve  isu . ( 13) .  The iteration is :

is, - = X , + L . T ~~~~~~~~~ 
) (2 3 )

r : + I  X
k

V _ I V
L , indicates the i nve r se  of is • Too i n v e r s i o n  r e q u i r e s

‘1:

t h a t  L~ be n o n — s i  r eT a i l e r , t h a t  i s , a unique solution of

E q .  ( 13) rca a i res  tact too darn rminani t of be r o n — z e r s .

The most  e f t e c d . r c  o re  ci Eq. (23) in  the solution. of

Eq.  ( 13)  suqoest s  o n l y  p er i od i c  reca:, i t a t i o n  a r c  i n ver s i o n

of Lx , s ince  the c o m p ut e r  e x e c u t i o n  tint: r e cu i re d  to i n v e r t

L~ is n igh  compared to ti:~ t i m e  r equ i r ed  to eva lu at e  the

rcamind cr of Eq. ( 2 3 ) .  The m o d i f i e d  i cua m of the  d c . ;t o n —

R a p h s o n  m e t h o d  used  in STA6S is:

Xk l  X
k+L 

(F_ Lx
k

) ( 2 4 )
m

here the aris e: ri :t n iI . ir:e tea the laS: I t:ert:ti~~n far
V — i -

L a a re:.r:a

~ne m a c : a: s a s s  .1 ch~ m oct et  J. Sc t Ofl o~ so Lien on

is prcvro~cd ov the co r o n a l  iced Ncrton~~-anhscn :ethed • L et

X satisfy Eq. (ib ) under th e  load vector F, then ~f for

30
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every nei ghb orhood of X there exists another vector Y such

that

I~xY = F  (25)

then bifurcation buckling has occurred at load F. As pre-

vious ly mentioned , a uni que solution of Eq. (18) using the

iteration scheme of Eq. (23) requires that L x be non—
k

singu lar . Conversely, if th ere are mul t i p le solut ions  of

Eq. (18) then L x is singu lar , in which case:
k

det (L’ ) = 0 (26)Xk

Let:

X A XL (27)

where XL is the vector of displacement unknowns that satis-

fies Eq. (18) for a given load vector FL. Substituting Eq.

(27) into equation (26) we obtain:

det (L ’A x  ) = 0 (28)
L

For classical buckling in which prebuckling rotations are

ignored , onl y the linear terms of L AX are retained , resu lt—
L

in g in an eigenvalue problem of the form :

det (A—AB ) = 0 (29)

The specific method employed to obtain t~ un d amenta l

elgenvalue A and its el genvec t or is not mentioned in the

STAGS manual s (Ref 13) and (Ref 14). If the reader wishes

more in forma t ion in thi s area , a description of t he Power

31
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Metho d can be foun d in (Re f 18) and several me thods as

applie d to a large finite—elemen t program are described in

the NASTRA N Theoretical Manual (Ref 19). The buckling

load vector Fcr is a mu ltiple of the appl ied load vector

for the linear solution .

F 
~~L

The formation of the A and B matrices in Eq. (29)

will be considered briefly. From Eq. (15) we know that:

H _ _ _ _ _ _ _ _  
= ~ 

ak ~
2
~ u

k (31)

~X (i)~ X(j) k ~X (i)~ X(j )

Using Eq. (14) the k th term of Eq. (31) is:

2 k  T k k T
__________  

= 
_____  

D ?z + ~ 
2~k A sk (32)

iX (i)~ X (j) ?X (i) dX (j) ?X (i)~ X( .j)

where S~ is the linear stress resultant vector at mesh

station k. The more general (non—linear ) stress resultant

vector is:

sk = Dk z~
( (33)

where
T

= L’~x N9 N~9 
M
~ 

M9 M J

The terms genera ted by the f irs t term on the rig ht si de

of Eq. (32) make up the A matrix , an d represent contribu—

ti ons from membrane energy.

The second term in Eq. (32) contributes to the B matrix

an d represents the bending energy.

32
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An exam ple of the derivation of the constitutive rela-

tions , Eq. (33) , for a shell with smeared stringers is

given in (Ref 13).

Modeling

The shells investigated in this thesis were stiffened

circular cylin drical shells wit h rein forcements aroun d two

symmetrical ly placed rectangular cutouts. The linear bifur-

cation capabi lity of STAG S was used to predict buckling

loads, as opposed to a non—linear collapse analysis which

wou ld have required considerably more compu ter time. The

accuracy of linear bifurca tion theory for stiffene d cylin-

drical shells using STAGS was substantiated by Palazotto

in (Ref 12)~ He ana lyzed a stringer sti ff ened she ll with

two rectangu lar cutouts. The finite difference mesh con-

sisted of 602 mesh points , wi th a concentra tion of mesh

points in the vicinity of the cutouts. Due to triple

symmetry on ly one—eighth of the shell was anal yzed.

The buckl ing load for thi s shell was compu ted usin g

both linear bifurcation theory and non—linear collapse

theory. Despi te the fact that the radial displacements

were consi derably greater for the non— linear analysis , the

buckling load predicted by l inear  b ifurca t ion theory was

only 6.87 per cent higher than the collapse load predicted

by non—linear theory. This is an acceptable level of accur-

acy since the expense of non—linear analyses would severely

limit the affordable range of parameters that could be

33 



investiga ted .

Smeared stiff ener theory was used to represent the uni-

formly spaced rings an d stringers sti ff enin g the entire

shell. An alternate method was to specify a discrete stif-

fener for ring or stringer . The additional inpu t time re-

quire d for discrete stiff enin g was not jus tified by a

commensura te increase in accuracy of the buckl ing load as

shown by Palazotto (Ref 12). He indicated that the dif-

ference in buckling loads using smeared stiffeners and

discrete stiffeners amounted to less than four percent

for a similar problem.

On the basis of the num ber of mesh poin ts used by

Palazotto and current geometry , the author used a minimum

of 776 mesh points.

The reinforcing frame around the cutout was modeled

using discretely located stiffeners.

34
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III. Results

Model Descri p t ion

In this thesis , a stif fened circular cyl indrical shell

with a rein forcing frame around the cutou t was analyzed for

a variety of parameters. The basic geometry was held con-

stan t while four parameters were varied independently:

Internal Stiff enin g

Stringers Only

Rings an d Stringers

Total Cutout Size 2a

12 x 12 in. total cutout size

24 x 24 in. total cutou t size

Ratio of reinforcing frame volume to removed cutou t

volume

W5f/W0 = 0.5

W 5f /W0 = 1.0

W
5f
/W
0 = 1.5

Wsf /W = 2.0

Rein forcing f rame posi t ion (4 posit ions)

The basic shell  geome try Is shown in Fig. 3. The
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~ 
1I !pup.ur~~~~ IuI~~

h = .09534— ~~~~~~~ 

~~~~~~~~~~~~~~~~~ = 57.295

48”

________  ~~~~~~ 

2a-~1 96”

Cut:u t Sizes E = lO 7psi

2a 12” nu 333

2a = 24” G = 3.75 lO6psi
x

Z = 1591.

Portion of Sh ell
Analyze d

F i g u r e  3. I o si c  .Shell Geometr~;
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radius of the shell was chosen such that the circumferen-

tial coordinate was numerically equal in either degrees or

inches. The leng th was chosen such that a finite difference

mesh could be imposed upon the shell compati b le with the

sti ffener and reinforcing frame locations and the cutou t

boun daries , since STAGS requires that the discrete stiff eners

and the cutout edges lie along mesh lines. Smeared stiffe—

ners shoul d also lie along mesh lines for accurate repre-

sentation . The value of Z for this shell is 1591. The

overall dimensions were chosen so that this thesis could be

compared wi th previous work by Palazotto (Ref 12). The

dimensions given , approximate a large missle interstage.

The smeared stiffener geometry and spacing are indica-

ted in Fig. 4. The ring and stringer geometries were de-

cided upon in order to approx imate those tha t would be

expected in actual applications. The two to one ratio of

the height to width was chosen as compromise of good bend-

ing stiffness and yet reasonable torsional stiffness.

The two cutou t sizes used were a = 6” and a = 12”

corres pondin g to 12” x 12” and 24” x 24” cu touts respec t-

ive ly. The value of the cutout size parameter ,

is 2.57 and 5.13 for a = 6” and a = 12” , respectively.

The value of a = 12 approximated the largest cutou t size

for which linear theory is valid (Ref 12).

The rein forcing f rame vol ume to remove d cu tou t vol um e

ra tios corres pon d to the s i t u a tion where the rein forcing

frame weighs from one—half to twice the wei ght of the

37
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/blh 1. Ar/b2h

h t 
hr = .338 2”

b t = .3781” H H
b = .1691”

2 r
A t = .2860 in

A = .05720 in 2

b1 = 3 ”

~~~~~~b2 = 3”

Fiarre ab . Smeared Stiifener Geometry and Spacina
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ma terial removed for the cutout. This was considered as

large a range as woul d be of practical interest.

Note that the frame positions shown in Fig. 5 are

d ifferen t for a = 6” and a = 12”. The maximum frame

positions were chosen as being the maximum distance at

wh ich the frame wou ld have a signi f ican t im pact on the

buckling load as determined in (Ref 12).

Note that for a given volume ratio the total frame

volume remained constan t as the frame position was varied.

This was necessary in order to validl y compare the most

ef ficient frame position for a given volume ratio.

The equations for the geome tric properties of the

rein forcing frame will be discussed. The volume per unit

area of the cutout for the stringer stif fened shell is

WOA = .19068 1N 3/1N 2; and for the ring and stringer

stiffened shell WOA = .20975 1N 3/1N 2. The cross sectional

are a of stiffening frame is given by:

A 5f = a2WOA (W5f/W )/2d

where 2a is the total cutou t d imension an d d is the distance

from the cutou t centerline to the stiffening frame. For a

square cross—section , the heig h t and width of the sti ff en-

in g frame become :

b h (A ) ½ (36)sf sf Sf

The moments of inertia equal :

or y = 
~z 

= bsf hsf
3/12 = hsf

4/12 (37)
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v
J

Note: Frame volume remains constant for
a given volume ratio W 5f /W0 “1

___________ __________ __________ 

bsf

POSITION 2a = 12” 2a = 24”

1 6.0 12.0 
—

2 7.5 13.5 
_______h t~3 9.0 15.0

4 12.0 18.0 L
5 15.0

6 18.0

Frame distance, d , from the
centerline of the c u t ou t

Figure 5. Reinforcing Frame Locations
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The torsional sti ffness cons tant  (Ref 15), for b/h

is

J5f = .1406 b~f h5f 
(38)

For the presen t va lue of G

GJ5f = 527382.  h 5f
4 psi ( 3 9 )

The values of the frame properties described above are

given in Appendix A. The list ing is ordered according to

compu ter run number with the geome tric parameters shown

for each run.

The analysis was carried out over one—eighth of the

shell surface since the load in g and shell were tri ply

symmetric abou t the planes x = 48” , a = 00, and z = 0”.

Su ff icient accuracy wit h t he min imum num ber of mesh points ,

require d separate finite difference mesh arrangements for

a = 6” and a = 12”. These meshes are shown in Fig. 6.

A uni form axial displacement was applied at the end

of the cylinder. This type of loading used is comparable

to usual experimenta l load application (Ref 9). Symmetric

boundary conditions were dictated by analyzing the problem

over one—eighth of the shell. The boundary conditions and

enforced displacements are shown in Fig. 7.
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Boundary  1 
— —--

~
-— - ----- >- e

Boundary Boun dary
4 2

Boundary 3

EDGE PREBUCK LING BUCKLING

1 v=w ,
~~
=O, u= .1.” ~i = u = w ,~~=O

2 v=w ,9=0 v=w ,,=0

3 u=w , ,, =O u=w ,~~=O

4 v=w ,~~=O v=w ,9=0

:ic’Jre 7.  n on..r.dar Conc~itiOns

43

_ _ _ _ _



- - ~~~~ - . —~~~~~~

Numer i ca l  R e s u l t s

As previousl y stated , a stiffened cylindrical shell

with a reinforcing frame around a cutou t was analyzed for

a var ie ty  of parameters  us ing  the l inear b i fu rca t ion  por-

tion of STAGS .

A tabular  l i s t i ng  of the buck l ing  loads , 
~cr ’ is given

in App endix B , according to computer run number.  In addit-

ion , the ra t ios  P /P and P /P are l i s ted , where P andcr o cr 1 o
P 1 are dependent upon the pa r t i cu l a r  shel l  in quest ion.

P 0 is the buckling load of a shell with the same type of

overal l  shell  s t i f f e n i n g  (stringers only or rings and

s t r inge r s)  as the shell in question , but  one that does no t

have cutouts or reinforcing frames. P1 is the buck l ing

load of a shell as described above , but with a cutout.

The buckling load ratio 
~Cr’~O 

is plotted versus the

dis tance , d , of the frame from the centerline of the cutout

in Figures 8 through 11. Figures 8 and 9 are for stringer

stiffened shells; and Figures 10 and 11 are for shells stif-

fened by rings and stringers. For Figures 8 and 10 the cut-

out size is 2a = 12” ; and for F igures 9 and 10, 2a = 24” .

P1/P has been shown for reference.

An inspect ion of Figures  8 through 11 indicates t h a t

the most effective position for the reinforcing frame is

always along the cutout edce.

i t  sss been ~sservoa in (i-en 12) t:st ~ne cercra±

c cl i s : s- a  s~.sne in  tse v i c i ni t ’  a: a ss t ou t  is sin~i lar  to

t h a t  ci a s ne l l ’ s d i s p l a c e m e n t  f i e l d  u n d e r  a l i n e a r  p r e b u c k —

ling a na l y s is .  Thus , i t  is poss ib le  to appreciate the ideal

frame position by compar ing  t he  l i n e a r  d i s p l a c e m e n t  f i e l d s

of she lc s i t n  - -
- ~, - - 
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the reinforcing frames in various locations. The linear

displacements of a stringer stiffened shell with a cutou t

size 2a = 24” and volume ratio W5~ /W0 = 2, are shown in

Figures 12 and 13 for the case with no frame and the case

with a frame at the cutout edge , respectively. In Figure

12 , notice the large radial displacements along the upper

and lower edges of the cutout. In Figure 13 the very

definite stiffening effect of the frame along the cutou t

edge is readily apparent. Both the large radial displace-

men ts along horizontal edges and the large rotations along

the vertical edges of the cutou t have been drama tical ly

reduced by the reinforcement.

An additional optimum position occurs for a stringer

stiffened shell with cutou t size 2a = 12” and volume ratio

Wsf/Wo = .5, in which the reinforcing frame is equally

effective 6” away from the cutout as it is along the cut-

out edge. This is in spite of the fact that at the outer

position the cross—sectional area of the reinforcing frame

is only half the area of inner frame (frame volume is inde-

pen dent of position ), and th e moments of inertia have a

ratio of 1:4. The linear displacement fields are shown in

Figures 14 , 15 and 16 for no frame , a frame along the cutout

edge , and a frame 6” from the cutou t edge , respectively.

nsp ect ion  of F i g u r e s  24 and 15 revea l s  t h a t  the  d i s p l a c e —

ments and rota tions along the cutou t edge are again some—

what smaller for the frame adjacent to the cutout edge than

those for the unreinforced shell. For the frame 6” away
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f rom the cu tout , however , the d isp lacements  are not  re—

duced as much.  Figures 17 th rough  19 d i sp lay  the ax ia l

compressive stress as a surface for the shells mentioned

above. It is evident that a reinforcing frame in posi-

tion 1 significantly reduces the stresses in the vicinity

of a cutout below those for an unreinforced shell. This

stress reduction lessens the chance for local buckling,

consequently , leading to a higher shell buckling load.

However , even a close examination of Figures 17 and 19,

...nows that a frame at position 4 yields only a slight re-

duction of stress in the area of the cutout.

Next , a comparison will be made of the normalized

displacements (maximum displacement = 1) occurring at bi— L

furcation ; these are given in Figures 20 through 22. Com-

paring these Figures shows that the buckling displacements

near the cutout are quite different for the reinforced and

unreinforced shells. Apparently , even the small frame at

position 4 is sufficient to alter the buckling mode.

The trends of the curves in Figures 8 through 11 indi-

cate that a reinforcing frame positioned far away from the

cutou t may cause the shell  to buckle  at  a load lower than

the buckling load for an unreinforced shell. This , in fact ,

occurs in Figure 10 for a ring and stringer stiffened shell

for a volume ratio W f/W = .5 with frame at position 6.

In order to suacest ar e x a l a n at i o n  f o r  t h is  occurrance.

consider a strir~aer sti±fened sheli. ‘~jth 2a 12” ,

= .5, and a frame at position 6. The plots of linear

prebuckling deflections and stresses are nearly identical

to those for a shell withou t the reinforcing frame .

55
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The norma lized buck l ing disp lacements are shown in Figure

23. Notice that for this frame position , the buckling pat-

tern no longer resembles the patterns for frame pos itions

I and 4; instead , the pattern is similar to that of the

shell withou t a frame. Also , notice that the vertical leg

of the frame lies at the bottom of an inward buckle. It is

supposed that the eccentricity effect of the internal frame

contributes to the early buckling of the shell due to the

additional compressive stress caused by the frame ’s eccen-

tricity leading to a less stable configuration .

In Figures 24 through 27 buckling load ratio 
~cr’~o 

is

plotted versus volume ra tio W5f/W0s The variation of shell

stiffening and cutout size is in the same order as for Fig-

ures 8 through 11. As a general rule the heavier reinforc— -

ing frames ‘sf~~
’o~ 

lead to higher buckl ing ratios cr’~~o~~ 
-

An exception to this trend is shown in Figure 26 for frame

position 6. Notice that for stringer stiffened shells ,

(Figures 24 and 25) the light frames (Wsf/Wo = .5) produce

a strengthening effect that is roughly independent of frame

position. The effect of frame position does not become

large until heavier frames are used. On the other hand ,

H for ring and stringer stiffened shells (Figures 26 and 27)

the effect of frame position is very large for light frames

(W $f/W = .5).

Apparently the light frames for ring and stringer

stiffened shells are affecting a factor of buckling which

i _
I ~c not significant in stringer stiffened shells. An
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interesting observation is that the ring and stringer

stiffened shells already have a series of “reinforcing

frames” surrounding the cutout consisting of the rings and

stringers. The additional stiffnei s of this configuration

requires heavier frames in order to alter the deformations

significantly, whereas the relatively flexible stringer

stiffened shell does not require heavy frames to alter the -
buckling pattern . In order to give a more detailed expla-

nation of this effect, consider the stiffening effect of

the ring of the reinforcing frame. Since the volume of rein-

forcing frame remains constant for a given volume ratio ,

W 1W , the cross—sectional area of the frame is inverselysf 0 -

proportional to the distance , d , of the frame from the cen-

terline of the cutout and the moment of inertia to the

square of d. Hence , for the ring and stringer stiffened

shell , the added stiffness of the reinforcing frame is large

when the frame is along the cutout edge ; but for the frame re—

muved from the cutout it is not as large when compared to the

stiffness of the existing ring stiffened skin. On the other

hand , for the stringer stiffened shell , the relative increase

in stiffness in the circumferential direction is large even

for a frame removed from the cutout; since withou t the frame ,

only the relatively wea~z skin resists bendinc and .~orapreasive

tnat Flc ’.2r e 2.~ t n r c~~an 2i can be useci  t-~ ce t e rm in e

the required combination of frame volume and frame location

• req u ired to ac hi eve a certa in ra tio 
~cr”~ o ’ For example ,

63

1_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~—~~~



consider Figure 27 which is for a ring and stringer stiffen—

ed shell with a 24” x 24” cutout. Suppose that it is not

possible to reinforce the cutout at the edge , but can be

reinforced at position 2, what is the required volume of

reinfcrcing frame to achieve a buckling load equivalent to

a similar shell without a cutout? The required volume ratio

of the reinforcing frame can be easily determined as follows.

Draw a line through 
~cr’~o 

= 1.0 that intersects the frame

posi t ion 2 curve. A line dropped from this intersection

to the axis yields the required volume ratio (and therefore

volume ) for the reinforcing frame. Note that this proce—

dure works equally well for any other value of PcrIPo

69
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IV. CO~JCLUSI0 N S

The following conclusions cart be made.

(1) A reinforcing frame equal in volume to the

mater ia l  removed fo r  a cutou t and placed

ad jacen t  to t h a t  c u t o u t , can increase the

b u c k l i n g  load of the shell  to or above tha t

of a shell without a cutout.

(2) For either a stringer or a ring and stringer

s t i f f e n e d  cy l i nd r i ca l  shell  w i t h  r ec tangu la r

cutouts , the optimum position for a reinforc-

ing frame is along the cutout edges.

(3) Positioning a frame away from the cu tout  ed ge ,

in mo st  ca ses , drastically reduces the buck—

ling load from that obtainable by placing the

same volume of reinforcing frame adjacent to

the cu tou t .

(4) For very li ght frames there may be a frame

position away from the cutou t edge wh ich is

equally effective as the position adjacent

to the cutout.

( i.) ~~
-
~~~: :czi:i:~~c .~ ~~ci r  a..~~ .- ~~~~ . th e  c2 t c u :

:~~. t :~e i~~~~~
-
~~: I ir - :  co:c~

belo .. th~~z ~r .n~ ~irror~ o~ t~~ol1.

__________________



(6) It is possible , with the use of STAGS to de-

termine the reinforcement frame cross—sec—

tion necessary to efficiently stiffen a

shell with cutouts to any desired strength.
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Appendix A

Reinforcing Frame Geometric Parameters

The geometric parameters for the reinforcing frames

depend upon the independent parameters; shell stiffening,

cutout size, vol ume ratio, and frame position according

to Eqs. (35—39). For completeness , the frame distance ,

d , cross—sectional area, Asf, height hsf, moment of iner tia ,

~~~~ and torsional stiffness , GJ5f, of the reinforcing

frame are listed below for each run.
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Appendix B

Buckling Loads and Buckling Load Ratios

The buckling loads and the ratios of 
~~Cr ’~~O 

and

are listed below versus compu ter run number.

p
0

STRS R&S

—739275. —1544810.

RINGS p p ipSTRS a 1 l o

STRS 6 —710427. .9610

STRS 12 —59425 7. .8038

R&S 6 —1505686. .9747

R&S 12 —1027689. .6653
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RINGS POSI —
RUN STRS a W sf ~’W o TION ~cr ~cr~~ o ~cr ’~~1

1 STRS 6. .5 1 —729443. .9867 1.0268

2 STRS 6. .5 2 —727416. .9840 1.0239

3 STRS 6. .5 3 —727975. .9847 1.0247

4 STRS 6. .~~ 4 —729944. .9874 1.0275

5 STRS 6. 1. 1. —755997. 1.0226 1.0641

6 STRS 6. 1. 2 —742562. 1.0044 1.0452

7 STRS 6. 1. 3 —736492. .9962 1.0367

8 STRS 6. 1. 4 —734463. .9935 1.0338

9 STRS 6. 1.5 1 —786334. 1.0637 1.1068

10 STRS 6. 1.5 2 —762628. 1.0316 1.0735

11 STRS 6. 1.5 3 —748654. 1.0127 1.0538 -

12 STRS 6. 1.5 4 —738076. .9984 1.0389

13 STRS 6. 2. 1 —814986. 1.1024 1.1472

14 STRS 6. 2. 2 —784170. 1.0607 1.1038

15 STRS 
- 

6. 2. 3 —763223. 1.0324 1.0743

16 STRS 6. 2. 4 —743344. 1.0055 1.0463

17 STRS 12. .5 1 —697135. .9430 1.1731

18 STRS 12. .5 2 —690129. .9335 1.1613

19 STRS 12. .5 3 —688843. .9318 1.1592

20 STRS 12. .5 4 —670989.  .9076 1.1291

2~ STF.S -12. 1. 1 —750429. 1.0151 1.2628

22 Si~-S 12. 1. 2 —730447. .98e~1 1.2292

23 STPS 12. 1. 3 — :13609. .9720 1.2093

24 STRS 12. 1. 4 —702140. .9498 1.1815

25 STRS 12. 1.5 1 —804421. 1.0881 1.3537
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RINGS POSI—
RUN STRS a W f/W0 TION ~cr ~cr’

1
~o ~cr’

1
~ 1

26 STRS 12. 1.5 2 —776607. 1.0505 1.3069

27 STRS 12. 1.5 3 —757189. 1.0242 1.2742

28 STRS 12. 1.5 4 —725810. .9818 1.2214

29 STRS 12. 2. 1 —852 897.  1.1537 1.4352

30 STRS 12. 2. 2 —820741. 1.1102 1.3811 
-

31 STRS 12. 2. 3 — 796221.  1.0770 1.3399

32 STRS 12. 2. 4 —752408. 1.0178 1.2661

33 R&S 6. .5 1 —1541205. .9977 1.0236

34 R&S 6. .5 2 —1529239. .9899 1.0156

35 R&S 6. .5 3 —1524161. .9866 1.0123

36 R&S 6. .5 4 —1511143. .9782 1.0036

37 R&S 6. 1. 1 —1594916. 1.032 1.0593

38 R&S 6. 1. 2 —1559540. 1.010 1.0358

39 R&S 6. 1. 3 —1542169. .9983 1.0242

40 R&S 
• 

6. 1. 4 —1518237. .9828 1.0083

41 R&S 6. 1.5 1 —1655584. 1.0717 1.0996

42 R&S 6. 1.5 2 —1598681. 1.0349 1.0618

43 R&S 6. 1.5 3

44 R&S 6. 1.5 4 —1527205. .9886 1.0143

45 R&S 6. 2.0 1 —1714487. 1.1098 1.1387

H 46 R~..S 6. 2.0 2 —1642113. -1.0630 1.0906

~y: FI. .S 6. 2.0 3

48 F-~- .S 6. 2.0 4

49 R~:S 12. .5 1 —1412561. .9144 1.3745

50 R&S 12. .5 2 —1230672. .7966 1.1975

8i



RINGS POSI—
RUN STRS a Wsf/Wo TION ~cr ~cr”~o ~cr~

’
~ 1

51 R&S 12. •5 3 —1106145. .7160 1.0763

52 R&S 12. .~~~ 4 —1054802. .6828 1.0264

53 R&S 12. 1. 1 —1559507. 1.0095 1.5175

54 R&S 12. 1. 2 —1499013. 
• 
.9704 1.4586

55 R&S 12. 1. 3 —1387305. .8980 1.3499

56 R&S 12. 1. 4 —1161682. .7520 1.1304

57 R&S 12. 1.5 1 —1668644. 1.0802 1.6237

58 R&S 12. 1.5 2 —1600474. 1.0360 1.5574

-

• 

- 

59 R&S 12. 1.5 3 —1536190. .9944 1.4948

60 R&S 12. 1.5 4 —1331873. .8622 1.2960

61 R&S 12. 2. 1

62 R&S 12. 2. 2 —1691898. 1.0952 1.6463

63 R&S 12. 2. 3 —1623268. 1.0508 1.5795

64 R&S 12. 2. 4 —1447692. .9371 1.4087

65 STRS 6. .5 5 —724668. .9802 1.0200

66 STRS 6. .5 6 —721550. .9760 1.0157

67 STRS 6. 1.0 5 —734689. .9938 1.0342

68 STRS 6. 1.0 6 —727661. .9843 1.0243

82 R&S 6. .5 6 —1497083. .9691 .9943 
-

-1
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